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Received 25 May 1984 

Abstract. It is argued that much of the recent controversy over the Aharonov-Bohm effect 
has been fuelled by the widespread consideration of solenoids of infinite length; in this 
limit, the field and the vector potential have somewhat anomalous properties and it appears 
superficially that the Aharonov-Bohm phase shift can be changed by a gauge transforma- 
tion. This incorrect impression is here removed by considering a solenoid of finite length 
and by carefully distinguishing the longitudinal and transverse parts of the vector potential. 
It is shown that the phase shift depends only on the transverse part of the vector potential 
and it cannot be changed by a gauge transformation. The nature of the difficulty that 
occurs in the limit of a solenoid of infinite length is examined in detail. The finite-length 
theory given here also provides guidelines for the design of experiments on the Aharonov- 
Bohm effect. 

1. Introduction 

The Aharonov-Bohm effect (Aharonov and Bohm 1959, Ehrenberg and Siday 1949) 
concerns the phase difference, proportional to 

f 

between the paths from source to screen followed by the two beams in an electron 
interference experiment. Here A is the magnetic vector potential, and the line integral 
is taken round the closed loop obtained by subtracting one vector path from the other. 
The phase difference, and thus the positions of the interference fringes, depend upon 
the size of the magnetic flux 0 enclosed by the loop (see Feynman et a1 1964 and 
Erlichson 1970 for readable accounts). Most of the interest in the effect derives from 
the circumstance that it appears to depend upon the values of A rather than the 
magnetic field B at the electron positions. It should be emphasised that the electron 
beams are usually arranged to pass only through regions of sufficiently small B that 
the direct influence of the Lorentz force on the electron motion can be neglected. 

There has recently been some controversy over the extent to which the vector 
potential A experienced by the electron beams, and hence their phase difference, can 
be modified, or even completely transformed away, by means of gauge transformations. 
This possibility is supported by Bocchieri and Loinger (1978) and by Bocchieri et a1 
(1979), and it has accordingly been claimed by Bocchieri and his coworkers that the 
Aharonov-Bohm effect does not exist. Less drastically, Roy (1980) and Home and 
Sengupta (1983) purport to show that the Aharonov-Bohm phase shift does exist, but 
that its magnitude can be entirely expressed in terms of the magnetic field B in regions 
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of space accessible to the electron beams. The conventional view, that the Aharonov- 
Bohm effect does exist and is determined by the values of A rather than B sampled 
by the electron beams, has been reaffirmed by Klein (1979), Zeilinger (1979) and Bohm 
and Hiley ( 1979) using various electromagnetic and quantum mechanical arguments. 

The discussions of the theory of the Aharonov-Bohm effect mentioned above almost 
all assume that the magnetic field is produced by a solenoid of infinite length placed 
between the two electron paths. We believe that this procedure is misleading and has 
in fact led to some of the misunderstandings concerning the nature of the effect. Not 
only must the solenoid be finite in any experimental realisation, but also, and more 
seriously, the vector potential of an infinite solenoid is somewhat pathological and 
needs careful treatment. The discussion that follows is based upon the potential of a 
finite-length solenoid, which is of course the quantity needed for comparison with 
observations, and which also allows analysis of the infinite-length limit. Our results 
support the conclusion of Zeilinger (1979) and Bohm and Hiley (1979) that the 
Aharonov-Bohm phase shift cannot be transformed away, and they give an unam- 
biguous prescription for fixing the gauge of the vector potential. 

2. Potential theory 

In this section we briefly review some more or less standard results of electromagnetic 
theory. Maxwell's equations in the magnetostatic limit give 

V x B = p 0 J  ( 1 )  

and 

V * B=O,  

where the current J associated with a time-independent charge density satisfies 

V * J=O. (3 )  

The vector potential A is introduced in the usual manner by 

B = V x A  (4) 

where according to the Helmholtz theorem (see for example Morse and Feshbach 
1953) A can be separated into a longitudinal part AIi and a transverse part AL that satisfy 

A = A" + A L ,  

V x A i ' = O  

and 

V * A L = O .  (7) 
The procedure for making this separation is described by Power (1964). Clearly from 
(4) and (6),  

B = V x A L ,  (8) 

and substitution into ( 1 )  gives 

(9) 2 1  V A =-poJ.  
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According to Stokes theorem (e.g. Morse and Feshbach 1953), any vector field F 
satisfies 

F * d l =  V X F - d S  (10) $ 1  

f 
where the integral on the right is taken over any surface that is bordered by the 
closed-line path of the integral on the left. Thus for the two parts of the vector potential, 
Stokes theorem gives 

A" * d l  = 0 (11) 

and 

A gauge transformation replaces an initial vector potential A by a new potential 

A '=A-Vx,  (13) 

V x V x = O ,  (14) 

where ,y is some function of position. Since 

the gauge transformation changes only the longitudinal part of A, and A is unchanged. 
Thus the magnetic field B is invariant under a gauge transformation. It is nevertheless 
sometimes useful to consider the same problem in a variety of gauges, as for example 
in the interaction of electromagnetic radiation with charged particles (Babiker and 
Loudon 1983). However, in the present problem it is convenient to take 

AI'=() (15) 
throughout. 

3. Field of a finite solenoid 

Consider a circular solenoid of radius a and length 2L that lies symmetrically on either 
side of the xy plane with its axis coincident with the z axis. The solenoid carries a 
current I and has n turns per unit length, n being sufficiently large that the separation 
between adjacent turns is much smaller than U.  We use cylindrical polar coordinates 
( p, 9, z )  and consider the fields only in the z = 0 plane. Then the vector potential has 
only a 4 component that depends only on p, and with the help of a result of Jackson 
(1975) we find 

(2 - k2)K ( k )  - 2E(  k) 
& ( p )  =- 2Boa loL dz k2[(a - t p ) 2  + z 2 ] i / 2  ' 

7r 

where K ( k )  and E ( k )  are complete elliptic integrals (Gradshteyn and Ryzhik 1965), 
k is a dimensionless variable given by 

k 2 = 4 a p / [ ( a  +p)2+z2], 
and 

Bo = poIn  
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is a convenient normalising field magnitude. This result holds both inside and outside 
the solenoid. 

It is clear by symmetry that B has only a z component in the z = O  plane; its 
magnitude is obtained from (8) as 

l a  A$ aA$ 
P aP P aP 

B,( p )  = - - ( P A $ )  = - +-. 

With the vector potential given by (16), it is only possible to obtain the complete 
variation of magnetic field with position by numerical integration. Figure 1 shows an 
example of such a calculation for the case L = 2a. It is seen that the magnetic: field 
takes its largest value at the centre of the solenoid, falls off smoothly for increasing p 
with no particular feature at p = a, and changes sign at some radial distance, denoted 
by po, well outside the solenoid. The inset to the figure shows the detailed variation 
of the field in the vicinity of its sign change, which occurs at p = po = 2 . 6 ~  for L = 2a. 

1.or ! 
0.81 

t \  

Figure 1. Variation of magnetic field with radial 
distance p in the z = 0 plane of a solenoid of length 
2 L  where L = 2a. The inset shows an enlarged view 
of the variation in the vicinity of the sign change at 
Po. 

Figure 2. Vanation of B , ( p ) 2 ~ r p / B , a  with radial 
distance p in the z = 0 plane of a solenoid of length 
2 L  where L = 2a. For a fixed value of p the total 
flux enclosed by a disc of radius p is the net area 
under the curve between the origin and that value 
of p .  For equation (25 )  to be valid the positive and 
negative areas must be equal. 

Although the integrand in (16) is complicated for general values of p, there are 
fortunately some simple analytical approximations that hold in the limits p<< a and 
p >> a. For both cases k << 1, and the standard expansions of the complete elliptic 
integrals (Gradshteyn and Ryzhik 1965) enable the integration to be performed with 
the result 

Boa2 p L 
A$(p)=-- 

2 ( a  + p y  [ (a  +p)2+L2]”2 

The corresponding magnetic field is 

B,U’L 2 ~ ~ * + ( 2 ~ - ~ ) ( ~  + p ) 2  

2 ( a  + p ) ’ [ ( a  +p)2+L2]3’2 
B,( P = - - ( p < < a a n d p > > a ) .  (21) 
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The fields at the centre of the solenoid are 

A$(O) = 0 and B,(O) = BoL(a2 + L2)-''2. (22 )  

The radial distance at which the magnetic field vanishes can also be determined 
from the approximate expression (21 )  in the case where the solenoid length is much 
larger than its radius. The numerator of (21 )  then vanishes at 

( 2 a ~ 2 ) 1 / 3  ( L > > a ) ;  (23 )  

this distance is much larger than a. 
Finally, we note that in the limit of very large radial distances, (20 )  and (21)  give 

A$( p )  = Boa2L/2p2 

Bz( p )  = -Boa2L/2p3 
for p >> a and p >> L. 

The integral of the vector potential round a circle of very large radius therefore vanishes 
as l l p ,  and it follows from Stokes theorem (12)  that 

lim 2 r p A $ (  p )  = B,( p)2.rrp d p  = 0 (correct). (25 )  
P - a  Jom 

The total magnetic flux through the z = 0 plane therefore vanishes, a consequence of 
the Maxwell equation ( 2 )  which requires the magnetic field B to be solenoidal. The 
magnetic flux lines are closed, and they therefore pass twice through the plane, once 
in the vicinity of the solenoid and once in the opposite direction at some radial distance 
larger than po. Figure 2 shows the equal positive and negative areas spanned by the 
integrand of (25 )  for the case L = 2a. 

4. Aharonov-Bohm effect with semicircular paths 

Consider an Aharonov-Bohm experiment in which the electron paths have the forms 
of semicircles concentric with the axis of a solenoid, such that the phase difference is 
proportional to an integral of A $  around a circle of radius R. The required integral 
represents the magnetic flux passing through a disc of radius R and with the use of 
Stokes theorem (12 ) ,  it can be written 

@( R )  27rRA$( R )  = B,( p ) 2 r p  dp. loR 
Experiments with the circular configuration assumed here can in principle be realised 
with the use of Josephson-junction interferometers (Jaklevic et a1 1965, Tonomura et 
a1 1982). 

Figure 3 shows the variation of the flux (26 )  with R for a variety of solenoid lengths. 
The maximum in each curve is seen by differentiation of (26 )  to occur at the radius 
po  for which B, = 0. For long solenoids po  is given to a good approximation by (23 ) ,  
and this radius of maximum flux has a magnitude that lies between the diameter and 
length of the solenoid. The phase shift in an Aharonov-Bohm experiment with 
semicircular paths is thus a maximum for semicircle radius p o .  We note that the 
magnetic field B is then zero along the entire electron paths. This configuration thus 
displays in its most acute form the essence of the Aharonov-Bohm situation in which 
the vector potential A l  has significant values but the magnetic field B, is insignificant 
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Figure 3. Magnetic flux through a disc of radius R as a function of R for various values 
of solenoid length 2L. The graphs shown are for L/a = 20, 100,200,300,500,700 and 1000. 

at the electron positions. The enclosed flux is of course entirely determined by the 
magnetic field, but only by its magnitudes at positions not sampled by the electrons. 
For very long solenoids the maximum enclosed flux tends to ihe value 

@ , , = @ ( p 0 ) =  .rr~oZna2=.rra2Bo ( L / a + c o ) .  (27) 

It is seen from figure 3 that the flux @( R )  falls rapidly to zero for R < po. The fall-off 
for R > p ,  is much more gradual and the zero limiting value of @ at infinite radial 
distance given by ( 2 5 )  is only approached when R is very much greater than the 
solenoid length. 

Expressions used in earlier discussions of the Aharonov-Bohm effect are obtained 
from appropriate limits of (20) and (21). Thus Roy (1980) gives a vector potential for 
a solenoid of zero diameter but finite flux that agrees at z = 0 with the a + 0 limit of 
(20) when a0 is held at a constant value. We note from (21) that the magnetic field 
is negative in this case for all p > O ,  and the vanishing of the total flux through the 
z = 0 plane in accordance with (25) is secured by the positive contribution of a singular 
magnetic field at p = 0. 

Most discussions assume however that L is much larger than any other dimensions 
of the system, when (20) and (21) reduce to 

A 3 P )  =4B0a2pl(a + P I 2  ( 2 8 )  

B,(P)  = ~ ~ a ’ / ( a  +d3, (29) 

and 

where both results are valid for L+ 0;) and p << a or p >> a. In the former case, the 
limiting results can be simplified still further to 

and in the latter case to 
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We note that these results are quite different from those obtained in (24) where the 
radial distance p is assumed to be very much larger than both the radius and length 
of the solenoid. In particular, the order in which the limits are taken in (31) produces 
a field and a vector potential that are no longer related by (19). The difficulties that 
can result from the use of the limiting results (28) to (3 1) are discussed in the following 
section. 

Figure 4 compares the vector potentials calculated for a long solenoid with L = 500a 
from the exact expression (16), from the approximation (28), and from the severe 
approximation (30) and (31). The last equations provide a poor match to the exact 
expression for the range of p plotted. 

5. Field of an infinite solenoid 

Most treatments of the Aharonov-Bohm effect, including the most accessible textbook 
account (Feynman et a1 1964), work with the limiting forms of vector potential given 
in (30) and (31). We wish to point out that these forms can easily lead to confusion. 
Indeed, their use has led to a protracted and continuing controversy (Bocchieri and 
Loinger 1978, Bocchieri et al 1979, Home and Sengupta 1983) over the possibility of 
transforming away the vector potential at large radial distances p by means of a gauge 
transformation. 

It is immediately clear from (29) and (31) that the limit L+LX of an infinitely long 
solenoid removes the region of negative magnetic field that ordinarily occurs for 
sufficiently 
positive in 

0.L 

large p, as illustrated in figures 1 and 2. The magnetic field is everywhere 
the limit and the integral of the magnetic field over the entire z = 0 plane 

r 

0.88- 
? - 
L l  

0.86- 

0.84- 

\ 

0 2 4 6 8 
P i o  

Figure 4. Comparison between the functional vari- 
ations with p of the exact ( L  = 500a) vector potential 
(curve I ) ,  the reasonable approximation (curve 2) 
and the extreme approximation (curve 3) .  

1 
10 20 30 

510 

Figure 5. Variation of the flux enclosed by the elec- 
tron paths in a typical electron interference experi- 
ment as a function of the position s of the solenoid. 
The inset shows a schematic arrangement of the 
experiment and defines the parameters. The para- 
meter values used in the computation of the flux are 
L = 500q b, = b, = 45a and d = 30a. 
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on the right-hand side of Stokes theorem (12) cannot therefore vanish. Indeed, the 
limit (3 1 ) gives 

r m  
Lim 2trpAi( p )  = J B,( p)2trp dp = (incorrect). (32) 
P-W 0 

This is in conflict with the correct result (25), which is itself a direct consequence of 
the solenoidal nature of the magnetic field expressed by the Maxwell equation (2). 
The incorrect result (32) follows from the ordering of limits in which L first tends to 
infinity and p is subsequently taken to infinity. In real experiments, L is of course 
always finite and the Stokes integral begins to acquire the necessary negative contribu- 
tions when the radius of integration exceeds the value pa given approximately by (23). 

The limiting vector potential (31) is derivable from a scalar potential 

x = @'04/2T, (33) 

It follows from the identity (14) and the property (6) that the limiting A$( p )  in (31) 
has the false appearance of a longitudinal vector. With this interpretation, it may then 
be tempting to remove A$(p) by means of a gauge transformation (13) with ,y from 
(33) taken as the gauge function, as in the work of Bocchieri e? a1 (1979) and Home 
and Sengupta (1983). Such a procedure is however improper. The potential (33) taken 
to be present over all of the z = 0 plane is that of a vortex line at p = 0 (see for example 
Morse and Feshbach 1953). Any gauge transformation that uses (33) as the gauge 
function has the effect of introducing a vortex line at p = 0, whereas no such vortex 
line is present in the field of a solenoid. It is therefore not permissible to remove 
A $ ( p )  by means of a gauge transformation. The vector potential (31) only has the 
appearance of a longitudinal vector because of the manner in which the infinite solenoid 
limit has been taken. The correct potential given accurately by (16) and approximately 
by (20) is a transverse vector, and there is of course no question of removing it, or 
indeed of making any useful modifications to it, by means of gauge transformations. 

The difficulties described in the present section make the use of the limiting forms 
(30) and (31) of the vector potential dangerous. It is, therefore, necessary to use 
instead the exact solution (16), some of whose numerical predictions have been 
illustrated in the figures, or where appropriate the approximate potential (20). Much 
of the interest in the Aharonov-Bohm effect is concerned with its basic principles and 
these can easily be obscured by the common restriction of treatments to a limit in 
which well established properties of magnetic fields appear to be violated. 

6. Aharonov-Bohm effect with rectilinear paths 

The semicircular-path Aharonov-Bohm experiment treated in 0 4 has a useful configur- 
ation for discussions of the principles involved in the effect. However, practical 
realisations usually involve electron-beam paths that approximately make up a kite- 
shaped contour or the lozenge contour shown in the inset to figure 5 (see for example 
Mollenstedt and Bayh 1962), the detailed experimental paths being somewhat more 
complicated than these simple idealised shapes. Observation of the Aharonov-Bohm 
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effect requires the detection of a shift, proportional to the enclosed flux, of a double-slit 
interference pattern within the unshifted single-slit diffraction envelope. 

The flux Q, enclosed by the beam paths in figure 5 clearly depends on the lozenge 
dimensions and the coordinate s of the solenoid axis, in addition to the solenoid length 
2L. It can be evaluated by carrying out the integration on either side of Stokes theorem 
(12). Clearly the simplification of the left-hand side shown in (26) no longer occurs, 
and it is necessary to obtain the enclosed flux by numerical integration. The main part 
of figure 5 shows the variation of enclosed flux with the solenoid coordinate s for the 
lozenge dimensions shown in the inset and for a total solenoid length of 2 L =  1000a. 
The curve was obtained by numerical integration of the right-hand side of (12) with 
the magnetic field approximated by (21). The zero-field radius given by (23) for these 
solenoid dimensions is 

po = 80a, 

and the magnetic flux through the contour is everywhere positive except when the 
solenoid approaches the end of the lozenge. 

It should be noted that the total flux for s = 0 lies somewhat below the maximum 
possible value cDo. This is partly because the maximum value cannot be achieved for 
solenoids of finite length even for circular contours (see figure 3),  and partly because 
the lozenge shaped contour excludes a further modest amount of positive flux. The 
percentage of total positive flux included in the contour falls as the solenoid is moved 
away from the centre of the lozenge, causing positive flux to move outside the contour 
and, for s > 35a, negative flux to move into the contour. However, the variation of 
flux with s is relatively slight for the range of s shown in figure 5 .  This absence of 
large variation occurs because, as can be seen from figure 3, a positive flux of about 
0.8cD0 lies within a circular disc of radius 10a centred on the solenoid. Thus large 
changes in enclosed flux would be expected only when the solenoid lies within about 
10a of the lozenge end, and this is confirmed by the numerical data. Nevertheless, it 
should be emphasised that the total flux in figure 5 always lies sufficiently below cDo 
that the calculated values must be used in any detailed interpretation of Aharonov- 
Bohm experiments. 

7. Conclusions 

The calculations presented here show that it is straightforward to calculate the 
Aharonov-Bohm phase shift for a solenoid of finite length. The enclosed flux, and 
hence the phase shift, take maximum values at the radial distance po for which the 
magnetic field vanishes. Thus an idealised Aharonov-Bohm experiment with semicir- 
cular electron paths of radius po would show the maximum effect of the solenoid field 
for a case in which the magnetic field B at the electron positions is strictly zero. The 
principles of such an experiment display in pure form the dependence of the observed 
result on the magnitude of A rather than B at the electron locations. It would of 
course be difficult to perform the experiment in practice since the electron beams could 
not be exactly confined at a given radius even if semicircular trajectories could be 
achieved. 

The apparent possibility of changing the calculated phase shift by means of gauge 
transformations has been shown to be a consequence of working with a limiting form 
of vector potential that applies to a solenoid of infinite length. The derivation of this 
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limiting form from the finite-length theory shows that the required vector potential is 
entirely transverse, and the phase shift to which it gives rise cannot possibly be affected 
by any lawful gauge transformations, since these change only the longitudinal part of 
the vector potential. The transverse vector potential is fixed by the current in the 
solenoid and the B field to which it gives rise. The gauge-independent formulation of 
the Aharonov-Bohm effect has been discussed by W6dkiewicz (1984) from a quite 
different viewpoint. 

Finally, we comment on suggestions by Roy (1980) and by Home and Sengupta 
(1983) that the Aharonov-Bohm phase shift can be expressed in terms of B fields 
accessible to the electron beams. The former paper has already been critically discussed 
by Greenberger (1981), Klein (1981), and Lipkin (1981). In the latter paper, a major 
contribution to the phase shift comes from magnetic fields close to one end of the long 
solenoid. However, this region of space is certainly not sampled by the electron beams 
in the usual experimental set-up, and their remark seems to add nothing of substance 
to the usual freedom in Stokes theorem (12) to choose on the right-hand side any area 
that is bordered by the contour of the line integral on the left-hand side. It is of course 
the case that the transverse vector potential A' experienced by the electron beams is 
determined by the overall spatial distribution of magnetic field B. Nevertheless, there 
is no way in which the phase shift can be expressed solely in terms of the magnetic 
fields actually sampled by the electron beams in their routes round opposite sides of 
the solenoid, and this remains the most interesting feature of the Aharonov-Bohm effect. 
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